2,643 research outputs found

    Coding for Parallel Channels: Gallager Bounds for Binary Linear Codes with Applications to Repeat-Accumulate Codes and Variations

    Full text link
    This paper is focused on the performance analysis of binary linear block codes (or ensembles) whose transmission takes place over independent and memoryless parallel channels. New upper bounds on the maximum-likelihood (ML) decoding error probability are derived. These bounds are applied to various ensembles of turbo-like codes, focusing especially on repeat-accumulate codes and their recent variations which possess low encoding and decoding complexity and exhibit remarkable performance under iterative decoding. The framework of the second version of the Duman and Salehi (DS2) bounds is generalized to the case of parallel channels, along with the derivation of their optimized tilting measures. The connection between the generalized DS2 and the 1961 Gallager bounds, addressed by Divsalar and by Sason and Shamai for a single channel, is explored in the case of an arbitrary number of independent parallel channels. The generalization of the DS2 bound for parallel channels enables to re-derive specific bounds which were originally derived by Liu et al. as special cases of the Gallager bound. In the asymptotic case where we let the block length tend to infinity, the new bounds are used to obtain improved inner bounds on the attainable channel regions under ML decoding. The tightness of the new bounds for independent parallel channels is exemplified for structured ensembles of turbo-like codes. The improved bounds with their optimized tilting measures show, irrespectively of the block length of the codes, an improvement over the union bound and other previously reported bounds for independent parallel channels; this improvement is especially pronounced for moderate to large block lengths.Comment: Submitted to IEEE Trans. on Information Theory, June 2006 (57 pages, 9 figures

    On the Microscopic Foundations of Elasticity

    Full text link
    The modeling of the elastic properties of disordered or nanoscale solids requires the foundations of the theory of elasticity to be revisited, as one explores scales at which this theory may no longer hold. The only cases for which microscopically based derivations of elasticity are documented are (nearly) uniformly strained lattices. A microscopic approach to elasticity is proposed. As a first step, microscopically exact expressions for the displacement, strain and stress fields are derived. Conditions under which linear elastic constitutive relations hold are studied theoretically and numerically. It turns out that standard continuum elasticity is not self-evident, and applies only above certain spatial scales, which depend on details of the considered system and boundary conditions. Possible relevance to granular materials is briefly discussed.Comment: 6 pages, 5 figures, LaTeX2e with svjour.cls and svepj.clo, submitted to EPJ E, minor error corrected in v

    Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field

    Full text link
    We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displacements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local "defects" to such materials. We propose a scalar "noise" field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.Comment: Minor corrections to match the published versio

    Force Chains, Microelasticity and Macroelasticity

    Full text link
    It has been claimed that quasistatic granular materials, as well as nanoscale materials, exhibit departures from elasticity even at small loadings. It is demonstrated, using 2D and 3D models with interparticle harmonic interactions, that such departures are expected at small scales [below O(100) particle diameters], at which continuum elasticity is invalid, and vanish at large scales. The models exhibit force chains on small scales, and force and stress distributions which agree with experimental findings. Effects of anisotropy, disorder and boundary conditions are discussed as well.Comment: 4 pages, 11 figures, RevTeX 4, revised and resubmitted to Phys. Rev. Let

    Scale separation in granular packings: stress plateaus and fluctuations

    Full text link
    It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enabling an `objective' definition of this field. Expectedly, it is not the mere size of the the system but the (related) magnitudes of the gradients that determine the widths of the plateaus. Ensemble averaging (even over `small' ensembles) extends the widths of the plateaus to sub-particle scales. The fluctuations within the ensemble are studied as well. Both the response to homogeneous forcing and to an external compressive localized load (and gravity) are studied. Implications to small solid systems and constitutive relations are briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the published versio

    Thermal Stability of Filtered Vacuum Arc Deposited Er2O3 Coatings

    Get PDF
    Erbium oxide (Er2O3) coatings were deposited using filtered vacuum arc deposition (FVAD) and their structure and thermal stability were studied as a function of fabrication parameters. The coatings were deposited on silicon wafer and tantalum substrates with an arc current of 50 A and a deposition rate of 1.6 ± 0.4 nm/s. The arc was sustained on truncated cone Er cathodes. The influence of oxygen pressure (P= 0.40-0.93 Pa), bias voltage (Vb= -20, -40 or grounded) and substrate temperature (room temperature (RT) or 673K) on film properties was studied before and after post deposition annealing (1273K for 1 hour, at P~ 1.33 Pa). The coatings were characterized using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Knoop Hardness. Optical microscope images indicated that the coatings had very low macroparticle concentration on their surface. The macroparticle diameters were less than 2.5 μm. The coatings were composed of only Er2O3 without any metallic phase under all deposition parameters tested. The coatings deposited on RT substrates were XRD amorphous and had a featureless cross-section microstructure. However, the coatings deposited on 673K heated substrates had a C-Er2O3 structure with (222) preferred orientation and weak columnar microstructure. The coating hardness varied with deposition pressure and substrate bias, and reached a maximum value of 10 GPa at P = 0.4 Pa and Vb = -40 V. The post-deposition annealing caused crystallization, and the coatings hardness dropped to 4 GPa with thermal treatment. However, after post-deposition annealing, no peeling or cracking appeared at the coating surface or the interface with the substrate

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Relativistic quantum coin tossing

    Get PDF
    A relativistic quantum information exchange protocol is proposed allowing two distant users to realize ``coin tossing'' procedure. The protocol is based on the point that in relativistic quantum theory reliable distinguishing between the two orthogonal states generally requires a finite time depending on the structure of these states.Comment: 6 pages, no figure
    • …
    corecore